Toto PDF obsahuje kapitolu z knihy: Zdeněk Fiala, Drahomíra Holmannová (ed.): *Uhlíkové nanomateriály. Biomedicínské aplikace a toxicita*, Praha: Karolinum 2025, https://doi.org/10.14712/9788024659848.

13. Cytotoxický efekt grafenu závislý na dávce a času v pokusech in vitro a in vivo (PAEC buňky, C57Bl/6 myši)

(Ústav histologie a embryologie)

© Univerzita Karlova, 2025 © Ústav histologie a embryologie, 2025

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

https://doi.org/10.14712/9788024659848.13

13 CYTOTOXICKÝ EFEKT GRAFENU ZÁVISLÝ NA DÁVCE A ČASU V POKUSECH *IN VITRO* A *IN VIVO* (PAEC BUŇKY, C57BL/6 MYŠI)

Následující text představuje komentář ke studii Bavorova H, Svadlakova T, Fiala Z, Pisal R, Mokry J. The Dose- and Time-Dependent Cytotoxic Effect of Graphene Nanoplatelets: In Vitro and In Vivo Study. *Nanomaterials*. 2022; 12(12):1978. https://doi.org/10.3390/nano12121978. Metodiky jsou podrobně popsány v příloze.

13.1 ÚVOD

Nanomateriály si získávají stále větší pozornost nejen vědců, ale i veřejnosti. Jejich produkce a používání však může za jistých okolností představovat riziko pro životní prostředí, rostliny i živočichy, včetně člověka. To je dáno snadných průnikem do organismu, a hlavně možností kumulovat se ve tkáních. Doba této depozice je determinována jejich fyzikálně-chemickými vlastnostmi, funkcionalizací povrchu a charakterem interakcí s biomolekulami.¹

Mezi uhlíkovými materiály patří k nejznámějším grafen a jeho deriváty. Vzhledem k jeho vysoké využitelnosti v mnoha oborech, včetně medicíny, je nezbytné získat přesná data o jeho potenciální toxicitě.^{2,3} Údaje o (ne)bezpečnosti grafenu jsou zatím poměrně omezené a pocházejí z velké části z výsledků akutních nebo subakutních forem expozice v experimentech *in vitro*.

13.2 CÍLE

Cílem prezentované studie bylo (1) *in vitro* testování cytotoxického (antiproliferativního) potenciálu grafenových plátků (GP) vůči myším primárním alveolárním epitelovým buňkám a (2) histopatologická analýza *in vivo* experimentu: sledování morfologických změn tkání vybraných orgánů (plic, srdce, žaludku, tenkého střeva, jater a ledvin) a sledování distribuce a kumulace nanočástic v organismu po perorální a intratracheální (akutní i chronické) expozici myší grafenovým nanoplátkům.

13.3 MATERIÁL A METODIKA

13.3.1 Příprava suspenze GP

GP byly získány od firmy PlasmaChem GmbH (velikost plátků do 2 mm, tloušťka 1–4 nm). Pro experimenty byly GP suspendovány v 0,02% cholátu sodném a sonikovány po dobu 30 minut. Zásobní roztok o koncentraci 250 mg GP / ml suspenze byl následně ředěn na pracovní koncentrace (5–100 mg/ml).

13.3.2 Kultivace myších primárních alveolárních epitelových buněk (PAEC)

Buněčná kultura PAEC byla získána od firmy Cell Biologics (izolace z myší kmene C57Bl/6). Kultivace byla prováděna ve specifickém kultivačním médiu s obsahem růstových faktorů (0,01% insulin-transferrin-selen a 0,01% EGF), 1% L-glutaminem, 1% antibiotiky a 10% FBS při 37 °C a 5 % CO_2 .

13.3.3 Analýza cytotoxického účinku GP

Buňky PAEC byly kultivovány na 96jamkové destičce po dobu 24 hodin a poté exponovány GP o koncentracích 5–100 mg/ml po dobu 24 nebo 48 hodin. Analýza cytotoxického účinku byla prováděna pomocí LDH CyQUANT a WST-1 testu. Absorbance měřena na přístroji ELISA analyzer SUNRISE Xfluor 4 při vlnové délce 490 nm.

13.3.4 Buněčná analýza ve skutečném čase (real-time)

Buňky PAEC byly exponovány GP o koncentracích 5–100 mg/ml po dobu 24 nebo 48 hodin. Poté byla v reálném čase sledována změna hodnoty "cell indexu", který zahrnoval změny adheze, proliferace, viability a morfologie.

13.3.5 Histopatologická analýza v in vivo experimentu

Studie *in vivo* byla provedena na dospělých myších samcích kmene C57Bl/6 (stáří 8–12 týdnů). Myši byly rozděleny do 8 skupin po 6–9 zvířatech (Tabulka 2). Expozice GP o koncentracích 5 nebo 50 mg/ml byla provedena perorálně (PO) nebo intratracheálně (IT). Ve skupinách 1A, 1B, 2A, 2B (akutní expozice) byl GP myším podán jednorázově, ve skupinách 1C a 2C byl podáván denně po dobu 21 dnů (chronická expozice). Skupiny 1D a 2D byly skupinami kontrolními, ve kterých byly myši exponovány pouze cholátu sodnému.

Po 1, 7 a 21 dnech od jednorázové aplikace a po 21 dnech opakované expozice byly myši usmrceny a byl proveden odběr vybraných orgánů (žaludku, tenkého střeva, jater a ledvin). Následně byly zhotoveny histologické preparáty orgánových tkání a provedena jejich histopatologická analýza (morfologické změny, distribuce a kumulace GP).

Skupina	Místo vstupu	Dávkování GP	Počet zvířat	Doba
1A	IT	5 µg/ml	9	1, 7, 21 dní od aplikace
1B	IT	50 µg/ml	9	1, 7, 21 dní od aplikace
1C	IT	50 µg/ml	6	21 dní (denně)
1D	IT	0 μg/ml	9	1, 7, 21 dní od aplikace
2A	РО	5 μg/ml	9	1, 7, 21 dní od aplikace
2B	РО	50 µg/ml	9	1, 7, 21 dní od aplikace
2C	РО	50 µg/ml	6	21 dní (denně)
2D	РО	0 μg/ml	9	1, 7, 21 dní od aplikace

Tabulka 2. Struktura studie

13.3.6 Statistická analýza

Výsledky byly vyjádřeny jako aritmetické průměry se směrodatnou odchylkou (normalizace ke kontrolám). Pro analýzu byl použit Shapiro-Wilk test, ANOVA test a Dunnetův test (SW GraphPad Prism). Statistická významnost byla vyjádřena pomocí ukazatele p.

13.4 VÝSLEDKY

13.4.1 Analýza cytotoxického účinku GP

Analýza cytotoxického účinku GP vůči buněčné linii PAEC byla prováděna pomocí LDH testu a WST-1 testu. Oba testy prokázaly významný cytotoxický účinek expozice v situacích, kdy byly buňky exponovány koncentracím vyšším než 50 µg/ml po dobu 48 hodin (GP narušovaly integritu buněčných membrán). Buněčná populace měla při tomto expozičním scénáři viabilitu sníženu o více než 20 % (Obrázek 11). Výsledky jsou v souladu s údaji ostatních autorů.^{4,5}

13.4.2 Real-time buněčná analýza

Výsledky analýzy potvrdily cytotoxický (antiproliferativní) vliv expozice GP na buněčnou linii PAEC v situacích, kdy byly buňky exponovány koncentracím 50–100 µg/ml po dobu delší než 24 hodin. Hodnota "cell indexu" nevykazovala významné změny zhruba 24 hodin po expozici GP, což naznačuje vytvoření buněčného monolayeru a vzájemných mezibuněčných vazeb (Obrázek 12). Nicméně, delší doba expozice v kombinaci s vyšší expoziční koncentrací vedla k postupnému snižování hodnoty "cell indexu", což pravděpodobně reflektovalo přítomnost oxidačního stresu. Podobné výsledky byly popsány i v jiných studiích.^{6,7}

Obrázky 11. Cytotoxický vliv expozice GP na buněčnou linii PAEC *Poznámka:* Výsledky testů LDH a WST-1; * p < 0.05; **** p < 0.0001.

13.4.3 Histopatologická analýza v in vivo experimentu

Studie *in vivo* simulovala dvě nejčastější cesty vstupu nanomateriálů do organismu. Histopatologická analýza po intratracheální expozici myší GP potvrdila závěry testů cytotoxicity. Jednorázová (akutní) expozice GP se na vnitřní struktuře tkání neprojevila. Při opakované (chronické) expozici GP došlo ke změně morfologie plicní tkáně ve smyslu až trojnásobného ztluštění stěn alveolárních sept (Obrázek 13A) a k vyplavení erytrocytů do intersticia plic (Obrázek 13B). Endokard myšího srdce obsahoval rezidua grafenových nanočástic (Obrázek 13C), nicméně stěna myokardu morfologické změny nevykazovala.

Obrázek 12. Cytotoxický vliv expozice GP na buněčnou linii PAEC *Poznámka:* Výsledky real-time buněčné analýzy.

Akutní ani chronická perorální expozice GP nevyvolala žádné patologické změny v morfologii odebraných orgánů (žaludek, tenké střevo, játra a ledviny). Důvodem mohly být nízké expoziční koncentrace GP a schopnost trávicího a močového systému účinně eliminovat GP (obecně nanomateriály) z organismu. Na rozdíl od studie Fua et al. jsme kumulaci GP ve tkáních zkoumaných orgánů neprokázali.⁸

13.5 SHRNUTÍ

Hlavními cíli bylo zhodnocení cytotoxického vlivu expozice GP na linii alveolárních epitelových buněk PAEC a histopatologická analýza orgánů zvířete po intratracheální a perorální (akutní i chronické) expozici GP.

Výsledky testů LDH a WST-1 potvrdily přítomnost na dávce (koncentraci a době expozice) závislých cytotoxických účinků. Pravděpodobná příčina cytotoxicity spočívá ve fyzikálních vlastnostech GP (především ve tvaru částic). Částice mohou narušovat celistvost buněčné membrány a uvolňovat cytoplazmu do okolí buňky. Je velmi pravděpodobné, že GP ve vyšších koncentracích (50–100 µg/ml) indukovaly v buněčném médiu tvorbu volných kyslíkových radikálů/intermediátů (ROS), které jsou zodpovědné za elevaci hladin oxidačního stresu. Oxidační stres může způsobovat změny buněčné morfologie a/nebo adhezi. Tyto faktory byly sledovány v reálném čase pomocí xCELLigence (změny "cell indexu"), která doplnila (a potvrdila) závěry testů cytotoxicity.

Volba buněčné linie PAEC reflektovala skutečnost, že respirační trakt je nejvýznamnější cestou vstupu GP do organismu. Nepotvrdili jsme kumulaci GP v respiračním traktu, ale pozorovali jsme významné ztluštění alveolárních sept. To naznačuje přítomnost zánětlivé reakce, vyvolané chronickou expozicí GP. Nenalezli jsme známky hypertrofie či zánětu myokardu, které jsou popisovány v odborné literatuře. Zjištěna byla pouze lokální kumulace GP v endokardu.

Akutní ani chronická perorální expozice nevyvolaly patologické změny v morfologii odebraných orgánů. Důvodem mohly být nízké expoziční koncentrace GP, které ještě nepřetížily kapacitu trávicího a močového systému eliminovat částice z organismu.

13.6 LITERATURA

- Martín C, Kostarelos K, Prato M, Bianco A. Biocompatibility and Biodegradability of 2D Materials: Graphene and Beyond. *Chemical Communications*. 2019;55(39):5540–5546. doi:10.1039/ c9cc01205b.
- Thapa RJ, Ku SK, Choi HG, Yong CS, Byeon JH, Kim JO. Vibrating Droplet Generation to Assemble Zwitterion-Coated Gold-Graphene Oxide Stealth Nanovesicles for Effective Pancreatic Cancer Chemo-Phototherapy. *Nanoscale*. 2018;10(4):1742–1749. doi:10.1039/c7nr07603g.
- 3. Bullock CJ, Bussy C. Biocompatibility Considerations in the Design of Graphene Biomedical Materials. *Advanced Materials Interfaces*. 2019:6(11):1900229. doi:10.1002/admi.201900229.
- Chang Y, Yang ST, Liu JH et al. In Vitro Toxicity Evaluation of Graphene Oxide on A549 Cells. *Toxicol Lett.* 2011;200(3):201–210. doi:10.1016/j.toxlet.2010.11.016.
- 5. Wang K, Ruan J, Song H et al. Biocompatibility of Graphene Oxide. *Nanoscale Res Lett.* 2011;6(1):8. doi:10.1007/s11671-010-9751-6.
- Kvakova M, Stroffekova K, Stofilova J et al. Toxicological Evaluation of Fluorescent 11-Mercaptoundecanoic Gold Nanoclusters as Promising Label-Free Bioimaging Probes in Different Cancer Cell Lines. *Toxicol In Vitro*. 2021;73:105140. doi:10.1016/j.tiv.2021.105140.
- González-Ballesteros N, Diego-González L, Lastra-Valdor M et al. Saccorhiza Polyschides Used to Synthesize Gold and Silver Nanoparticles with Enhanced Antiproliferative and Immunostimulant Activity. *Mater Sci Eng C Mater Biol Appl.* 2021;123:111960. doi:10.1016/j.msec.2021.111960.
- 8. Fu C, Liu T, Li L et al. Effects of Graphene Oxide on the Development of Offspring Mice in Lactation Period. *Biomaterials*. 2015;40:23–31. doi:10.1016/j.biomaterials.2014.11.014.

ZKRATKY

16HBE	lidská bronchiální epiteliální buněčná linie (human bronchial epithelial cells)		
3HFWC	hyper-harmonizovaný vodní komplex hydroxylovaného fullerenu C ₆₀		
A549	alveolární epiteliální buňky A549 (adenocarcinomic human alveolar basal epithelial cells)		
ABCA-1	ATP-binding cassette transporter		
ALP	alkalická fosfatáza		
ALT	alaninaminotransferáza		
ARPE-19	imortalizované lidské retinální buňky		
AST	aspartátaminotransferáza		
BAL	bronchoalveolární laváž		
BEAS-2B	imortalizovaná a nenádorová linie lidských plicních epiteliálních buněk (bronchial		
	epithelial cells)		
BMEC	mozkové mikrovaskulární endoteliální buňky (bone marrow microvascular		
	endothelial cells)		
BSA	bovinní sérový albumin		
BUN	blood urea nitrogen		
C ₆₀	fulleren		
CaCo2	buněčná linie lidského kolorektálního adenokarcinomu (human colon		
	adenocarcinoma cell line)		
Caco-2	imortalizované lidské buňky kolorektálního adenokarcinomu		
cAMP	cyklický adenosinmonofosfát		
CAT	kataláza		
CB	saze (carbon black)		
CD	uhlíkové tečky (carbon dots)		
CDH1	kadherin 1		
CFU	kolonie tvořící jednotku		
CHCE-T	lidské rohovkové epitelové buňky		
CNF	uhlíková nanovlákna (<i>cabon nanofibres</i>)		
CNH	uhlíkové nanorohy (carbon nanohorns)		
CNM	uhlíkové nanomateriály (carbon nanomaterials)		
CNP	uhlíkové destičky (carbon platelets)		
CNS	centrální nervová soustava		
CNT	uhlíkové nanotrubice (carbon nanotubes)		
CPPED1	calcineurin-like phoshoesterase domain containing 1		
СТ	počítačová tomografie		
CVD	chemická depozice z plynné fáze		

DAMP	damage/danger-associated molecular patterns
DWCNT	dvoustěnné uhlíkové nanotrubice (double-walled carbon nanotubes)
EC ₅₀	polovina maximální účinné koncentrace
EEG	elektroencefalografie
EKG	elektrokardiografie
EPC	endoteliální progenitorové buňky
EPO	eozinofilní peroxidáza
FBN1	fibrilin 1
FBS	fetální bovinní sérum
FDT	fotodynamická terapie
FLG	vícevrstvý grafen (<i>few laver graphene</i>)
FLGO	několikavrstvý grafen oxid (<i>few-laver graphene oxide</i>)
FN1	fibronektin
FSF1	fibrohlasty z kůže lidského obličeje
FSH	folikuly stimulující hormon
FTT	fototermální teranie
GGT	v-glutamyltransferáza
GIT	gastrointestinální trakt
GND	grafanová nanodestičky (grankana nanonlatalate)
GO	ovid grafenu (granhan ovida)
GO DOTA	oxid grafenu funkcionalizovaný kysalinou 1.4.7.10 tetraazaovklododekan 1.4.7.10
UO-DOIA	tetractovou
GO OD	-reflaction ou
CP	grafanové recký oklad grafena (graphene oklad quantan dois)
CDCD	gialchove platky
COD	receptor sprazeny s G proteinem (G protein-coupled receptors)
UQD	gialenove kvalilove lecky (graphene quantum dois)
ΠΖΑΓΛ	histore jamily member A
H9C2	
HaCal	imortalizovane keratinocyty
HASMC	bunky hladke svaloviny aorty (<i>numan aortic smooth muscle cells</i>)
HBEC-3KI	nenadorove bunky lidskeho bronchialniho epitelu
hConECs	lidské epitelové spojivkové buňky
hCorECs	lidské epitelové buňky rohovky
HEB	hematoencefalická bariéra
HEK-293T	lidské embryonální ledvinné buňky
HepG2	buňky hepatocelulárního karcinomu
НК-2	dospělé lidské buňky proximální tubulárního epitelu
HLF	lidské plicní fibroblasty (human lung fibroplasts)
HNEpC	primární buňky lidského nosního epitelu
hpf	hodin po fertilizaci
HSC 2012	Hazard Communication Standard
Hsp90	heat shock protein 90
HT29	buňky lidského kolorektálního adenokarcinomu s epiteliální morfologií
HUVEC	endoteliální buňky lidské pupečníkové žíly (human umbilical vein endothelial cells)
IARC	International Agency for Research on Cancer
ICAM-1	solubilní intercelulární adhezní molekuly 1 (intercellular adhesion molecules)
IL	interleukin
LLC-PK1	prasečí buňky proximálního ledvinného tubulu
LOX-1	lectin-like oxidized low-density lipoprotein receptor
LPS	lipopolysacharid

MAMP	microbe-associated molecular patterns
MPO	myeloperoxidáza
MWCNT	vícestěnné uhlíkové nanotrubice (multi-walled carbon nanotubes)
MWCNT-PVP	mnohovrstvé uhlíkové nanotrubice funkcionalizované polyvinylpyrrolidonem
MWCNT-TEPA	MWCNT funkcionalizované tetraetylenpentaminem
NCI-H322	nemalobuněčný bronchoalveolární karcinom
NCM460	epitelové buňky tlustého střeva
ND	nanodiamanty
NET	extracelulární neutrofilové pasti (neutrofil extracellular traps)
NF-κB	nuclear factor kappa-light-chain-enhancer of activated B cells
NHBE	normální lidské bronchiální epitelové buňky
NHDF	lidské dermální fibroblasty
NIOSH	National Institute for Occupational Safety and Health
NIR	blízké infračervené záření
NKR-52E	krysí epitelové buňky ledvin
NLR	NOD-like receptor
NLRP3	NOD-like receptor family pyrin domain containing 3
NOD	nucleotide-binding oligomerization domain
OSHA	Occupational Safety and Health Administration
Ox-MWCNT	oxidované MWCNT
PAMP	pathogen-associated molecular patterns
PEG	polyethylenglykol
PEG-MWCNT	polyetylenglykolované MWCNT
PRR	pattern recognition receptors
PTEN	homolog fosfatázy a TENsinu (phosphatase and TENsin homolog)
RES	retikuloendoteliální systém
rGO	redukovaný GO
RhE	SkinEthic [™] model rekonstruované lidské epidemirs
ROS	volné kyslíkové radikály (reactive oxygen species)
RPE	retinální pigmentový epitel
RTG	rentgenové záření
SAEC	epitelové buňky nižších etáží dýchacích cest (small airway epithelial cells)
sFLG	malý vícevrstevný grafen (small few-layer graphene)
SLGO	jednovrstvý grafen oxid (single-layer graphene oxide)
SOD1	superoxiddismutáza
SWCNT	jednovrstvé uhlíkové nanotrubice (single-wall carbon nanotubes)
TGF	transforming growth factor
TGFB1	transfornující růstový faktor β (<i>transforming growth factor</i> β)
TLR	Toll-Like Receptor
T-MWCNT	dispergované Tweenem-80
TNF	tumor necrosis factor
VCAM-1	solubilní vaskulární buněčné adhezní molekuly 1 (vascular cell adhesion molecule)
VEGF	vaskulární endotelový růstový faktor
Vero	buněčná linie epiteliálních buněk ledvin z afrického kočkodana zeleného
ZO-1	zonnula occludens-1